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ABSTRACT

Standard real-valued finite-difference (FD) and Fourier
finite-difference (FFD) migrations cannot handle evanes-
cent waves correctly, which can lead to numerical insta-
bilities in the presence of strong velocity variations. A
possible solution to these problems is the complex Padé
approximation, which avoids problems with evanescent
waves by a rotation of the branch cut. In this paper, we
apply this approximation to the acoustic wave equation
for vertical transversely anisotropic (VTI) media to derive
a more stable FD migration for such media. Our studies
of the dispersion relation of the new method indicate that
it should provide more stable migration results with less
artifacts and higher accuracy at steep dips. The best ro-
tation angle of the branch cut turns out to be 60°. This
resultis confirmed by the numerical impulse responses.

INTRODUCTION

Wave-equation migration algorithms have performed bet-
ter than ray-based migration methods when the velocity
model has strong lateral velocity variations. One draw-
back of wave-equation migrations, though, is their gen-
eral difficulty to image steep dips. However, recent ad-
vances, particularly for finite-difference (FD) (Claerbout,
1971) and Fourier finite-difference (FFD) migrations (Ris-
tow and Ruhl, 1994) can provide wide-angle approxima-
tions for the one-way continuation operators, thus im-
proving the imaging of steep-dip reflectors.

However, standard real-valued FD and FFD migrations
cannot handle evanescent waves correctly (Millinazzo et
al.,, 1997). As a consequence, FFD algorithms tend to
become numerically unstable in the presence of strong
velocity variations (Biondi, 2002). To overcome this limi-
tation, Biondi (2002) proposes an unconditionally stable
extension for the FFD algorithm. Earlier, Millinazzo et al.
(1997) proposed a different approach to treating these
evanescent modes in ocean acoustic applications, intro-
ducing an extension of the Padé approximation called
complex Padé. The complex Padé expansion has been
used in applied geophysics. Zhang et al. (2003) use the

method in finite-difference migration. However, their im-
plementation is not optimized for wide angles. Zhang et
al. (2004) propose an FFD migration based on a different
realization of complex Padé. Recently, Amazonas et al.
(2007) derived FD and FFD algorithms using the com-
plex Padé approximation for isotropic media to handle
evanescent waves. They demonstrated that this proce-
dure stabilizes FD and FFD migration without requiring
special treatment for the migration domain boundaries
and enables an accurate migration up to higher dips.

In anisotropic media, the acoustic wave equation does
not describe physically realizable phenomena, because
acoustic media cannot be anisotropic. Thus, Alkhalifah
(1998) used the dispersion relationship for vertical trans-
versely isotropic (VTI) media to derive a acoustic wave
equation for VTI media. Based on his work, several au-
thors have developed FD and FFD migration methods
in VTI media (Ristow, 1999; Han and Wu, 2005; Nolte,
2005; Zhang et al., 2005). Fei and Liner (2008) proposed
a hybrid FFD and FD algorithm for VTI media. In this
paper, we combine the ideas of these authors with the
complex Padé approximation to derive a more stable FD
algorithm for VTI media.

METHOD

According to Alkhalifah (2000), the acoustic wave equa-
tion for VTI media is given by
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Applying the Fourier transform in z, z and ¢ to equation
(1), we obtain the following dispersion relation
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where k. is the horizontal wavenumber, w is frequency,
vpo is the vertical P-wave velocity of the medium and v,
is the NMO velocity, given by

Un = vpo V1 + 23. 4)
Moreover, parameter 7 is given by
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where ¢ and ¢ are Thomsen’s parameters (Thomsen,
1986).
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From Fei and Liner (2008), we use the following notation
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Taking the square root of equation (3) using equation (6)
yields
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In analogy to the small dip-angle approximation of the
corresponding isotropic expression (Ristow and Ruhl,
1994), the square root in equation (7) can also be ex-
panded into a Taylor series at point v = 0 Fei and Liner
(2008). This leads to
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Note that setting n = 0, i.e., g1 = g2 = 1 in these equa-
tions provides an approximation for elliptically anisotropic
or isotropic media.

COMPLEX PADE FD APPROXIMATION

In this section, we derive the complex Padé approxima-
tion to the above dispersion relation, because we want
a steep-dip approximation and improved stability by bet-
ter handling of evanescent waves. For this purpose, we
have to represent the square-root in equation (7) in the
complex Padé expansion.

Real Padé approximation

A formal representation for square-root operator is based
on the Padé expansion (Bamberger et al., 1988):
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where for our anisotropic k. of equation (7),
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The number of terms N of the expansion should, in prin-
ciple, be infinite, but in practice, generally two to four
terms suffice for a reasonable approximation. The co-
efficients a,, and b,, are (Bamberger et al., 1988):
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Complex Padé approximation

If X2 > 1in equation (11), the left side is a purely imag-
inary number, but the right side remains a real-valued

quantity. In other words, the approximation breaks down.
Physically, this means that approximation (11) cannot
properly handle evanescent modes. This causes numeri-
cal instabilities and is responsible for the unstable behav-
ior of the FFD algorithm in the presence of strong velocity
variations (Biondi, 2002).

To overcome these limitations, Millinazzo et al. (1997)
propose a complex representation of the Padé expansion
in equation (11). They achieve this goal by rotating the
branch cut of the square root in the complex plane. Their
final expression is

Vi-X2x Oy - Zl BX2’ (15)

where,
/2
ané
An —_——, 16
[+ bu(eo— D 19
B, = b’l‘% (7)

14b, (e‘w‘ - 1)’

with a,, and b, as defined in equatlons (13) and (14),
respectively. The values A, and B, are the complex
Padé coefficients, and is the rotation angle of the branch
cut of the square root in the complex plane.

Thus, expanding k. of equation (7) into a complex Padé
series, we find
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with X defined in equation (12). This is the 2D
anisotropic complex-Padé finite-difference depth migra-
tion operator in VTI media. Note that, as before, setting
n = 0in equation (12) leads to the corresponding opera-
tor for isotropic and elliptically anisotropic media.

To evaluate the quality of the complex Padé FD approxi-
mation (19), Figure 1 shows its comparison with the ex-
act dispersion relation for a homogeneous medium. The
FD approximation was calculated using the first three
terms of the series with five different rotation angles of
o =5 a =45°, a = 60°, a = 757, and a = 90°.
The improvement in the approximation of the real part
of the dispersion relation with increasing « is evident.
The blessings are a bit more mixed for the imaginary
part. While the approximation in the evanescent region
improves for increasing «, there is a short interval of neg-
ative imaginary part immediately before the evanescent
region, which increases with «. Note that this negative
imaginary part will cause the evanescent waves to in-
crease exponentially. For this reason, the best Padé FD
approximation of the imaginary part is actually achieved
for a rotation angle of about 60°. Since the main nu-
merical instabilities of an FD migration are caused by in-
correctly treated evanescent waves, it is to be expected
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Figure 1: Complex Padé FD approximation for the disper-
sion relation of the one-way wave equation, computed
with three terms and different rotation angles. First:
a = 5°, Second: « = 45°, Third: « = 60°, Forth:
a = 757, Fifth @« = 90°. Left: Real part. Right: Imag-
inary part.
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Figure 2: Real Padé (@ = 0°) FD migration for an im-
pulse response for a constant-velocity VTI medium. The
anisotropy parameters are ¢ = 0.21 and ¢ = —0.032.

that a rotation angle of about 60° will produce the clean-
est migrated image with the least artifacts. Note, how-
ever, that even a rotation by a small angle improves the
behavior of the FD approximation (see top part of Fig-
ure 1). Although it creates rather strong fluctuation in
the evanescent domain of the real part of k., it already
introduces a nonzero imaginary part, meaning that the
incorrect evanescent modes at least will be attenuated.
In this respect, it is important to note that the peaks in
the imaginary part, representing the strongest damping,
coincide with peaks in the real part that indicate the most
incorrect propagation behavior.

IMPULSE RESPONSE TEST

As a next step, we investigate the impulse response of
the acoustic VTl wave equation (1). For this purpose, it
is important to recognize that this equation has two so-
lutions (Alkhalifah, 2000). One of these solutions is the
desired result representing a wavefront coincident with
the elastic compressional wavefront. The other solution
is an additional event, which has previously been ob-
served in full waveform modeling. However, apparently
this additional event was not always understood as a sec-
ond solution to the acoustic VTl wave equation. There-
fore, it has been labeled as numerical artifact (Grechka et
al., 2004), sometimes called the pseudo-S-wave artifact
(Fei and Liner, 2008). Alkhalifah (2000) solved equation
(1) analytically and observed that the undesired solution
can be eliminated with proper initial conditions. However,
such initial conditions would have to be medium depen-
dent and are thus very hard to find.

The FD algorithm is a numerical simulation of the above
VTl wave equation and therefore includes both solutions.
Tests by Alkhalifah (2000) indicate that the second solu-
tion does not develop in isotropic regions. Thus, he sug-
gests the use of isotropic layers to suppress it. Fei and
Liner (2008) seek instead a more general algorithm that
does not include the additional solution. They demon-
strated that the event can be eliminated by a hybrid ap-
plication of FFD and FD migrations. Here, we study pure
FD migration and thus will have to accept the presence
of the second event.
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Figure 3: Complex Padé FD migration for an impulse

response for a constant-velocity VTl medium. The
anisotropy parameters are ¢ = 0.21 and 6 = —0.032.
First: &« = 5°, Second: a = 45°, Third: a = 60°, Forth:
a = 75°, Fifth a = 90°.

As a reference, Figure 2 shows the impulse response at
t = 0.5 s of a real Padé (o« = 0°) FD migration for a ho-
mogeneous (constant velocity, constant n) VTl medium.
The source pulse is a Ricker pulse with peak frequency
of 25 Hz. The migration was carried out using three terms
in the Padé expansion.

Figure 3 depicts the same impulse response of the cor-
responding complex Padé FD migration in the same
medium, using a rotation angle of o = 05°, a = 45°,
a =607, a = 75° and a = 90°, respectively.

The most prominent features in both figures are the two
stronger events that are the two solutions of the acous-
tic VTl wave equation, i.e., the desired gP wavefront and
the undesired pseudo-S wave. Additionally, we immedi-
ately recognize lots of numerical instabilities, even caus-
ing noncausal events in Figure 2. These are greatly re-
duced in all panels of Figure 3. Note in particular that
even the rotation angle of 5° almost eliminates most of
the noncausal events in spite of its rather poor approxi-
mation of the evanescent part of the dispersion relation.

As a final, more subtle difference between Figures 2 and
3, we note that while all impulse responses have energy
up to high propagation angles, the real Padé approxima-
tion produces a slightly stronger distortion of the shape
of the desired event at steep dips, causing it to bend in-
wards at the top. The improvement achieved by the com-
plex Padé representation is a consequence of the better
approximation of the dispersion relation in the high-angle
range.

Comparing the complex Padé FD impulse responses of
Figure 3 to each other, we observe that the image for
a = 60° is the best one. This is in agreement the pre-
vious study of the dispersion relations, which also indi-
cates that @ = 60° is the best rotation angle for the com-
plex Padé FD migration. Note that, for the other angles,
the impulse responses also have a good shape, but in
these image the remaining artifacts caused by incorrectly
treated evanescent waves are stronger.

CONCLUSIONS

In this work, we have combined the anisotropic migra-
tion for VTl media using the acoustic VTl wave equation
of Alkhalifah (2000) with the complex Padé FD approxi-
mation of Amazonas et al. (2007) to derive a more sta-
ble VTI migration method. Our studies of the dispersion
relation of the new method indicate that it should pro-
vide more stable migration results with less artifacts and
higher accuracy at steep dips. The best rotation angle
of the branch cut turns out to be 60°. This result is con-
firmed by the numerical impulse responses.
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